Cours ENSEM

TP 1 : Développement d'une application de
collecte de données et de supervision via
sockets

& 3h

& Réseaux de capteurs
| Mis a jour le 04/11/2025

@ Objectifs

e Se familiariser avec la programmation de sockets TCP/UDP
e Comprendre le modele client-serveur

& Matériel nécessaire

e Ordinateur avec Python 3.x installé
e Acces au réseau local

(J Important

L'évaluation de ce TP se fait pendant la séance. Pensez a faire valider régulierement votre avancement
aupres de l'enseignant.

Description de l'application de supervision

On souhaite collecter les tensions et courants d'un ensemble de capteurs placés sur un systeme de type micro-
grid électrique. Ces données servent ensuite aux autres applications pour planifier, contrdler et optimiser les
opérations du micro-grid. Afin de collecter ces données, nous allons développer une application Python utilisant
les sockets pour récupérer les données des capteurs.

@ Note

Cette démarche est applicable a d'autres types de données et systémes nécessitant une collecte et une
supervision en temps réel.

L'application a développer collecte des données simulées provenant de deux capteurs :

e un capteur de tension qui envoie ses données via UDP ;
e un capteur de courant qui envoie ses données via TCP.

https://cours.mongaillard.fr/

Chacun des capteurs génére des données aléatoires dans des plages spécifiques :

e Tension:220 + 10V ;
e Courant:5 + 1A.

Une fois générées, les données sont stockées dans un fichier .

L'application doit récupérer les données, les afficher dans la console et permettre a I'utilisateur de visualiser les
graphiques correspondants grace a la bibliotheque matplotlib.

@ Note

Des squelettes de code ainsi que des exemples de code socket client/serveur sont disponibles sur Arche.

Q Tip

Pensez a tester vos codes dés que vous implémentez une nouvelle fonction pour faciliter le débogage.

Architecture de l'application

voltageSensor	UDP: 8888	
(serveur)	« {	
' ! | Application |

| supervision |
		(clients)
currentSensor	TCP:9999	
(serveur)	< {	

Partie 1: Modules d'acquisition de données
Dans cette premiere partie, nous allons programmer les deux modules de simulation de capteurs.

La classe définie dans le fichier fournit une structure de base pour les capteurs. Elle posséde
un attribut qui indique le nombre de valeurs a générer, ainsi qu'un attribut qui stocke les valeurs
générées dans un dictionnaire.

Q1 (2 pts). Créez un fichier[voltageSensor.py] contenant la définition de la classe qui hérite de
la classe [Sensor . Cette classe doit inclure une méthode qui:

e génére valeurs aléatoires de tension tirées uniformément entre 210V et 230V ;
e génére instants de mesure (en secondes) selon la formule i + random(0, 1),% € [0,nb — 1] ;
e stocke ces mesures dans le dictionnaire dont les clés sont les instants et les valeurs sont les

tensions correspondantes ;

e stocke le dictionnaire dans un fichier nommeé | voltage.json|.
® Note

Utilisez la fonction | dump() | du module pour écrire un dictionnaire dans un fichier .

Q Tip

Ajouter le parameétre a la fonction | dump() | permet d'obtenir un fichier plus lisible.

Les commandes

>>> vs = voltageSensor(5)
>>> vs.generate()

génerent par exemple le fichier | voltage.json | suivant :

{
"0.1567103252601113": 225.55530087394834,
"1.2164839663235272": 224.70993120869522,
"2.8837368183033956": 215.0099734534407,
"3.129765176593175": 217.15948563534192,
"4.300469195840086": 215.3837650640686

}

Q2 (3 pts). Implémentez une méthode qui crée un serveur UDP en écoute sur le port | 8888 | Ce
serveur doit générer les mesures de tension et les envoyer au client des qu'une requéte est recue.

@ Note

Utilisez la fonction | dumps () | du module pour convertir un dictionnaire en chaine de caractéres JSON.

® Note
Utilisez la méthode pour encoder une chaine de caractéres au format avant de l'envoyer
via le socket.

Testez votre serveur UDP avec le script | ubPclient.py | fourni.

/\ Warning

Vous devrez lancer plusieurs consoles (shell) pour exécuter les différents scripts (serveur et client).

Vous devriez obtenir une sortie similaire a celle-ci dans la console du client :

Input lowercase sentence: test

{
"0.1567103252601113": 225.55530087394834,
"1.2164839663235272": 224.70993120869522,
"2.8837368183033956": 215.0099734534407,
"3.129765176593175": 217.15948563534192,
"4.300469195840086": 215.3837650640686

}

Q3 (4 pts). Créez un fichier [currentSensor.py] contenant la définition de la classe permettant

de simuler un capteur de courant. Les instants de mesure doivent étre identiques a ceux du capteur de tension.
Ce capteur doit servir les données via un serveur TCP en écoute sur le port| 9999 |

Testez votre serveur TCP avec le script| TCPclient.py | fourni.

Partie 2 : Module de supervision

Dans cette seconde partie, nous allons développer le module de supervision qui récupeére les données des deux
capteurs, les affiche dans la console et permet de les visualiser graphiquement.

Q4 (2 pts). Dans le fichier , coder la fonction qui:

e crée un client UDP vers un serveur écoutant sur le port | 8888 | ;
e récupeére les mesures du capteur de tension ;
e retourne un dictionnaire qui contient les données recues.

@ Note

Utilisez la fonction | 1loads() | du module pour convertir une chaine de caracteres JSON en
dictionnaire Python.

Q5 (2 pts). Dans le fichier [app.py) coder la fonction qui retourne un dictionnaire contenant les

mesures du capteur de courant.

Le fichier | app.py | contient déja deux fonctions :

e |displayData() | permet d'afficher le contenu d'un dictionnaire de mesures donné en paramétre dans la
console;

o affiche dans la console un menu demandant a |'utilisateur une opération a réaliser
1 - Collecter données du capteur de tension

2 - Collecter données du capteur de courant
3 - Visualiser les données

Q6 (1 pt). Dans le fichier , coder la fonction qui :

e prend deux arguments en entrée :

o : le nom du fichier
o : un dictionnaire de mesures
e sauvegarde les données du dictionnaires dans le fichier texte nommé selon le format

suivant :

0.1567103252601113 225.55530087394834
1.2164839663235272 224.70993120869522
2.8837368183033956 215.0099734534407
3.129765176593175 217.15948563534192
4.300469195840086 215.3837650640686

Vous pourrez tester votre fonction avec le code suivant :

>>> mesures = { "1": 1@, "2": 20, "3": 30 }
>>> dump("test.txt", mesures)

Le fichier | test.txt | doit contenir :

110
2 20
3 30

Q7 (1pt). Complétez la fonction et testez votre application de supervision en ayant exécuté au
préalable les serveurs des capteurs de tension et de courant sur la méme machine (localhost). L'application doit
afficher le menu et permettre d'afficher les données récupérées dans la console et les sauvegarder dans des
ﬁchierstexte[voltage.txt]et[current.txt}

Q8 (3pts). Modifiez votre application de supervision pour récupérer les données de deux capteurs dont les
serveurs servent sur deux machines différentes de la machine locale. Apres avoir lancé Wireshark, testez votre
application, analysez les échanges de paquets entre les machines et expliquez-les a I'enseignant.

Q Tip

Utilisez des filtres d'affichage dans Wireshark pour ne visualiser que les paquets UDP et TCP échangés entre
les machines.

Q9 (2pts). Dans le fichier coder la fonction qui utilise la bibliotheque matplotlib pour

afficher trois graphiques a partir des dictionnaires collectés :

e un graphique de la tension en fonction du temps ;
e un graphique du courant en fonction du temps ;
e un graphique de la puissance instantanée en fonction du temps.

/\ Warning

Assurez-vous que les capteurs soient paramétrés avec le méme pour pouvoir calculer la puissance
instantanée.

Thomas Mongaillard
thomas.mongaillard@univ-lorraine.fr

Supports de TP/TD a I'ENSEM

mailto:thomas.mongaillard@univ-lorraine.fr

