
TP 3 : threads et sémaphores

⏱️ 4h
📚 Algorithmie en langage C
📅 Mis à jour le 23/10/2025

🎯 Objectifs
Découvrir la programmation concurrente avec les threads

🔧 Matériel nécessaire
Ordinateur avec compilateur gcc
CodeBlocks/VS Code

Partie 1 : les sémaphores

Rappels

Un sémaphore est une variable entière qui permet de contrôler l’accès à une ressource partagée par plusieurs
threads. Il peut prendre des valeurs positives ou nulles.

Si le sémaphore est supérieur à 0, cela signifie que la ressource est disponible et qu’un thread peut y accéder. Si
le sémaphore est égal à 0, cela signifie que la ressource est occupée et qu’un thread doit attendre avant de
pouvoir y accéder.

Un sémaphore est généralement manipulé à l’aide de deux opérations atomiques :

wait() (ou P()), qui décrémente la valeur du sémaphore. Si la valeur devient négative, le thread est
bloqué jusqu’à ce que le sémaphore soit disponible.
signal() (ou V()), qui incrémente la valeur du sémaphore. Si la valeur était négative, un thread bloqué

est réveillé.

Exercice
Voici deux processus partageant deux ressources (A et B) :

Cours ENSEM

https://cours.mongaillard.fr/

// Processus 1
P(A);
V(A);
P(B);
V(B);

// Processus 2
P(A);
V(A);
P(B);
V(B);

Les conditions initiales sont les suivantes :

// Initialisation des sémaphores
a = 1;
b = 0;

Q1. Montrez que les processus entrent systématiquement en interblocage.

Q2. Proposez une modification des conditions initiales pour éviter l’interblocage.

Q3. Montrez graphiquement que votre solution fonctionne.

Partie 2 : l’étoile mouvante
Nous allons, dans cette partie, programmer un simple jeu d’étoile qui se déplace dans un plateau. Lorsqu’elle
rencontre un obstacle, elle rebondit dans le sens opposé. Il est aussi possible de diriger l’étoile avec les touches
ZQSD du clavier.

Q1. Récupérez l’archive jeu.zip sur Arche et importez les fichiers dans un nouveau projet CodeBlocks.

L’archive contient les fichiers suivants :

jeu.c : le fichier principal du programme
jeu.h : le fichier d’en-tête
utilitaires.c : des fonctions utilitaires

Le fichier jeu.c contient la fonction main() qui effectue les opérations suivantes :

lecture du fichier plateau.txt qui contient la configuration du plateau de jeu
placement de l’étoile à une position aléatoire
lancement de deux threads :

un thread anim qui gère l’animation de l’étoile
un thread clavier qui gère les entrées clavier

On stocke le plateau grâce à un tableau d’entiers qui doit respecter ce format :

0 : case vide
1 : obstacle
2 : étoile

Warning

Les codes sont utilisables sous linux par défaut mais il suffira de décommenter les lignes spécifiques à
Windows si vous êtes sous cet OS. En particulier, la fonction sleep() sous linux est remplacée par

Sleep() sous Windows via la bibliothèque windows.h .

Q2. Dans le fichier utilitaires.c , complétez la fonction afficher_plateau() afin d’afficher le plateau de jeu
dans la console. Il faudra penser à effacer la console avant chaque affichage.

Q3. Écrivez la fonction placer_star() qui place l’étoile à une position aléatoire dans le plateau.

Note

Vous pourrez utiliser vos codes sur la génération de nombres aléatoires vus en TP1.

Warning

Il faudra penser à vérifier que la position choisie n’est pas un obstacle.

Q4. Écrivez la fonction calculer_direction() qui met à jour la direction que doit prendre l’étoile (star-

>direction). Pour rappel, l’étoile change de direction lorsqu’elle rencontre un obstacle.

Q5. Écrivez la fonction deplacer_star() qui est appelée par le thread anim . Après avoir fait appel à la fonction
calculer_direction() , cette fonction met à jour le plateau puis l’affiche avant de s’endormir pendant une

seconde.

Gestion de la vitesse

Q6. Ajoutez un menu au lancement du programme permettant à l’utilisateur de choisir la vitesse de l’étoile.

Vitesse Délai

1 - Lent 1000 ms

2 - Normal 500 ms

3 - Rapide 200 ms

Vous pourrez utiliser la fonction suivante :

// Millisecond sleep
void msleep(int milliseconds) {
 struct timespec ts;

 ts.tv_sec = milliseconds / 1000;
 ts.tv_nsec = (milliseconds % 1000) * 1000000;

 nanosleep(&ts, NULL);
}

Thomas Mongaillard
thomas.mongaillard@univ-lorraine.fr

Supports de TP/TD à l'ENSEM

https://cours.mongaillard.fr/algo-c/tp1-initiation/#g%C3%A9n%C3%A9ration-dun-nombre-myst%C3%A8re
mailto:thomas.mongaillard@univ-lorraine.fr

